
ChemScript 12.0
About this document
This document is the "ChemScript" section of the manual Chem & Bio Office® Chem& Bio3D,
Finder & Bio Viz and is made available as an excerpt for fast downloading.
To read the manual in its entirety or to download other sections, see the desktop support site at
www.cambridgesoft.com.

http://www.cambridgesoft.com/services/DesktopSupport/

Contents
Chapter 14
ChemScript.. 271

Getting Started 272
Editing Scripts.................................. 273

Tutorials ... 275
Useful References 277

Index..279
Chem & Bio Office 2010 User Guide i
ChemScript

ii

ChemScript
ChemScript is the cheminformatics Software
Development Kit (SDK), a library of the
“chemical intelligence” programming algo-
rithms that are prevalent throughout Cam-
bridgeSoft products. As a software developer,
you can create your own scripts for your par-
ticular business needs.
All example script files in the ChemScript
library are available in Python and .NET. If
you are familiar with either of these languages,
you will find these scripts easy to understand.
However, if you are new to either Python or
.NET, we suggest that you look at some of the
Web sites and books listed at the end of this
chapter.

Why use ChemScript?
ChemScript adds considerable versatility to
how you manage your chemical data. Using
ChemScript, you can modify, view, and trans-
fer your data from one place to another using
your own custom rules.1

For example, you can:
• Process chemical data in novel ways.
• Integrate cheminformatics applications.

• Develop new cheminformatics applications
or Web services.

Here are just a few common uses for Chem-
Script:
Salt splitting and stripping. You can identify
and remove salt fragments from a structure
drawing and register the pure compound.
Canonical codes. Generate canonical codes for
a set of structures and use the codes to find
duplicates in your data.
File format conversion. Convert structure or
reaction files from one format to another.
Generate properties. Execute Struct=Name or
generate physical property features found in
Chem & Bio Draw.
Common scaffold orientation. Enforce stan-
dard orientations of structures based on the
established orientation of a common substruc-
ture.
2D Structure Diagram Generation (SDG) and
Cleanup. Generate new 2D structures from
connection tables without coordinates and
clean up existing 2D structure using the Chem
& Bio Draw algorithms.

About Python
Although ChemScript is available in Python
and .NET, we will use Python throughout this
guide to explain ChemScript. Python is a non-
proprietary and widely used programming lan-

14

1. ChemScript lets you convert up to 10,000
data records per day. For greater capacity,
you will need ChemScript Ultra. For infor-
mation, contact CambridgeSoft.
Chem & Bio Office 2010 User Guide 271
ChemScript

guage. It provides clear syntax, object-oriented
programming, dynamic data typing, and high
performance across a broad range of platforms.
Here are some of Python’s features:
Human Readable Code. Easy to understand
and maintain.
Powerful Syntax; Simple to Use. You can
write concise, useful programs using a few
lines of code.
Functional Programming. Full language sup-
port for functions, control flow, and iteration.
High Level. Language support for container
objects and utility classes.
Widely Adopted. A large user base continually
provides new additions and contributions.
Object Oriented. Full support for classes,
inheritance, and polymorphism.
Connected. Bindings and interfaces for most
common languages and technologies.
The Python community has developed a rich
set of extensions to Python that are freely
available at the Python Web site. These exten-
sions provide database connectivity, server-
side Web functionality, numeric processing,
language interop, GUI features, and just about
anything else that is needed for rapid software
development.

How ChemScript works
The most fundamental purpose for ChemScript
is to read data from one source, modify the
data using a script, and write the modified data
to another location. Where the data is retrieved

from or written to can be almost any database,
file(s), or application.

Figure 14.1 A ChemScript script can retrieve data
from one source, modify the data, and write it to
another location.

How the data is modified is determined
entirely by the script. The script can delete
data, calculate or add new data, or edit existing
data. The data can be either text, structures, or
both.
Since ChemScript scripts are the same as any
other Python scripts or .NET program, you can
execute them using either the Windows com-
mand line or any development environment.

Getting Started
For editing ChemScript files, we recommend
that you use one of the many programming
tools that are available. The Python installation
provides one such tool, IDLE, installed as part
of the ChemBioOffice 2010 suite. To learn
more about IDLE, see the online Help guide in
the IDLE main menu.
By default, ChemScript 12.0, IDLE, and
Python 2.5 are installed on your local computer
when you install Chem & Bio Office 2010.
After the installation, we suggest that you go
272 ChemScript
Chapter 14

through the simple exercises in this section to
familiarize yourself with ChemScript and
IDLE.
STARTING IDLE
From the Start menu, go to All Pro-
grams>Python 2.5>IDLE (Python GUI). Python
is installed correctly if a Python shell is opened
in IDLE and the header indicates a version of
Python (Ex. 2.5), and a version of IDLE (Ex.
1.2). A prompt will also appear: “>>>”
LOADING THE CHEMSCRIPT LIBRARY
At the command prompt, type the line below
and press enter:
from ChemScript12 import *

NOTE: The command is case-sensitive.

The ChemScript library is loaded. If a “Wel-
come to CS ChemScript” message appears,
followed by a command prompt, then Chem-
Script is installed correctly.
CHEMSCRIPT HELP
You can read a description of any ChemScript
class within IDLE. For example, enter the line
below to return Help for the ChemScript Atom
class.
help(Atom)

The help will begin with a message such as:
“Help on class Atom in module
ChemScript12:”

ENTER SMILES DATA
Type the following line and press Enter:
myMol = Mol.LoadData('C1CCCCC1C')

This message appears:
Open molecule successfully: chemi-
cal/x-smiles

REPORTING A CHEMICAL NAME
At the command prompt type the line below
and press Enter:
myMol.chemicalName()

The line methylcyclohexane is returned.
COUNTING ATOMS
At the command prompt type the following
line and press Enter:
myMol.CountAtoms()

The command returns the atom count for the
structure defined with the chemical/x-smiles
format for 'C1CCCCC1C', which is 7.
EXITING IDLE
At the command prompt type the line below
and press Enter:
exit()

Confirm any prompts to complete the exit
command. Python IDLE exits.

Getting Started Guide
ChemScript 12.0 includes a Getting Started
guide to help you begin developing and using
your own scripts. To open the guide, go to
Start>All Programs>ChemBioOffice2010
>ChemScript 12.0>Getting Started.
The document includes notes on the Chem-
Script objects and functionality, Python, and
an overview of examples located on the file
system.

Editing Scripts
Using IDLE or another development environ-
ment, you can either edit any of the scripts pro-
vided with ChemBioOffice or create one of
your own. Regardless of how you develop a
script, it must include these commands:

from sys import *

from os import *
Chem & Bio Office 2010 User Guide 273
ChemScript

from os.path import *

from ChemScript12 import *

The first command imports the python system.
The second and third commands import the
operating system modules. The last command
imports all the ChemScript functions. After
you include these command lines, how you
develop the rest of your script is entirely up to
you.

Introducing the ChemScript API
ChemScript 12.0 includes a ChemScript API
reference guide. You can find the guide at
Start>All Programs>ChemBioOffice
2010>ChemScript 12.0>API Reference. It pro-
vides links and information for the ChemScript
object classes.
The ChemScript object model comprises two
fundamental levels of functionality, described
below.

ChemScript Object Classes
At the top level, the API consists of four object
classes:
Atom. Chemical element, charge, bonds to
neighboring atoms, drawing coordinates, 3D
coordinates (if available), stereochemistry, etc.
Bond. Bonded atoms, bond order, etc.
Molecule (Mol). A chemical connection table,
which can represent one or more molecular
fragments. This class also includes file I/O
capabilities and other advanced chemistry
functionality such as stereochemistry.
Reaction (Rxn). A chemical reaction with one
or more steps.

Functions and Algorithms
The secondary level consists of the core set of
high-level features that you can modify to meet

your specific business needs. Some examples
are described below.
Template Based Normalization. Enforce stan-
dard representations of functional group struc-
tures in chemical data.
Template Based Product Generation. Auto-
matic generation of products from a set of
reactants and a generically defined reaction.
For example, reactions like those between
amines and carboxylates.
Substructure Identification and Mapping.
Atom-by-atom comparison of a molecule with
a substructure. Positive matching provides an
atom-by-atom map of the substructure atoms
to those in the molecule.
Salt Stripping. Remove salts from a reaction
based on a pre-defined list of salt fragments.
Structure Orientation. Enforce standard orien-
tation of structures based on the established
orientation of a common scaffold.
2D Structure Generation and Cleanup. Use
Chem & Bio Draw-based algorithms to gener-
ate structure from scratch or after modifying
chemical data using a program.
Canonical Codes. Generate unique identifying
codes from a chemical structure.
File Format Conversion. Read and write file
data using all CambridgeSoft supported file
formats (CDX, CDXML, MOL, CHM, SKC,
SMILES, etc.).

Chemical Name and Structure Conversion1.
Use the Chem & Bio Draw Struct=Name fea-
ture to generate structures from chemical
names and names from their structures.

1. Premium functionality that may be licensed
from CambridgeSoft.
274 ChemScript
Chapter 14

Molecular Mechanics. Optimize molecular
structures using the MM2 force-field.

The ChemScript API online
CambridgeSoft provides the API online. You
can find the API at sdk.cambridgesoft.com.

Tutorials
We provide several sample scripts to illustrate
how you can develop your own custom code to
meet your business needs. Many of the scripts
we use are in the ChemScript samples direc-
tory. By default, this directory is where Chem
& Bio Office 2010 is installed:
C:\Program Files\Cambridge-
Soft\ChemOffice2010\ChemScript
12\Samples

For the sake of brevity, we won’t repeat the
scripts in this manual or try to teach the Python
language. However, we briefly describe what
you can do with the code examples so that you
can modify and expand upon them for your
own use. As you read the tutorials, you are
encouraged to view the code in IDLE and edit
it as desired to see how each example works.
For more on IDLE, see “Using ChemScript”
on page 5.

Example 1: Automated Structure Clean up
This sample script cleans up the structures in
multiple Chem & Bio Draw files all at the
same time. It uses the same cleanup function
used in Chem & Bio Draw. You can find the
script at Example.001/script.py. The
script reads the CDX structure files from a
source directory, applies the cleanup feature to
each structure, and write the modified files to

an output directory. The original files remain
unchanged.

Figure 14.1 The structure cleanup script reads a
structure file (left) and creates a new, cleaned up
structure file (right).

Although this example uses the CDXML for-
mat, other formats such as MDL MOL may
also be applied. You can also force Chem-
Script to use specific file formats for reading
and writing data.

Example 2: Create an SD file
The ChemScript examples include a script that
illustrates how you can create an SD file from
existing CDXML files. You can find the script
at Example.002/script.py. We begin with
a list of CDXML files that each contain a
chemical structure. The list of files is hard-
coded into the ChemScript script. When exe-
cuted, the script uses the SDFileWriter
method to create an SD file that includes all the
structures.

Example 3: Create a list of CDXML files
This example illustrates how to read an SD file
and write a list of CDXML files. The source
files is at Example.003/script.py.

Example 4: Filter an SD file
This example uses the atomByAtomSearch
method to demonstrate a simple application of
the "atom-by-atom" substructure search in
ChemScript. The program reads an SD file and
filters structures into one of two output SD
files, structures that contain a phenyl group and
Chem & Bio Office 2010 User Guide 275
ChemScript

structures that don’t. It also illustrates how you
can read chemical data formatted as a SMILES
string. See Example.004/script.py.

Example 5: Computing Canonical Codes
This example script checks whether any struc-
tures appear in both of two SD files based on
the structures’ canonical codes. The output is a
new SD file with the duplicate structures
excluded. See Example.005/script.py.
This example first computes the canonical
code for each structure. Since the canonical
code does not vary with different representa-
tions of the same chemical structure, it can be
used to determine whether two structures are
chemically equivalent.
This example also introduces the Python Dic-
tionary, which is an associative array. The dic-
tionary maps a key to a value. The dictionary is
used to determine whether a canonical code
has been previously encountered.
This example uses an alternate looping con-
struct to read an SD file.

CAUTION

Canonical codes should never be permanently
stored because their representation can change
among different versions of ChemScript.

Example 6: Simple salt stripping
The program reads an SD File, identifies and
removes salt components (if any are present),
and outputs two SD files. The output structure
file contains the original structures without the
salt component, and the output salt file con-

tains the salt components that were stripped,
along with a reference to the original structure.

NOTE: This example uses a default set of salts
that CambridgeSoft provides. However, you
can also define a customized salt table that
enables you to designate which chemicals are
considered salts.

Example 7: Structure Overlay
This script introduces the ChemScript structure
overlay feature. It uses a scaffold structure file
to superimpose two chemically similar struc-
tures. The script first examines the structures in
an SD file that contain a common scaffold sub-
structure. It then aligns these structures so that
they have the same orientation with respect to
the scaffold. See Example.006/script.py.

NOTE: The overlay functionality can also be
used to align three dimensional structures.

Example 8: Reaction Transformation
This example demonstrates reaction transfor-
mation. This means that you can draw a reac-
tion that defines a transformation of a molecule
and then apply that transformation to a set of
structure files.
All the files necessary for this tutorial are in
the Example.007 directory. The
transform1.cdxml file provides the reac-
tion that defines the transformationFigure 14.2.
276 ChemScript
Chapter 14

The files in the Input directory contain all the
structures that will be transformed.

Figure 14.2 The transform file defines how the
transformation is applied to the source files.

The script searches the input files for structures
that contain a nitro group, shown as a reactant
in the transformation file. If a structure is
found, the script transforms the nitro group to
the form shown in the product and copies the
entire structure to a new file. One example is
shown in the figure below.

Figure 14.3 A) before the transformation is applied;
B) after transformation.

Files that don’t meet the search criteria are
ignored.

Useful References
There are numerous resources available for
learning Python and .NET. Just a few of the
many books and Web sites are listed below.

Books

Python
In addition, there are many books about the
Python language that are available.

• Beginning Python: From Novice to Profes-
sional by Magnus Lie Hetland.

• Dive into Python by Mark Pilgrim.
• Learning Python by Mark Lutz & David

Ascher. This is a beginner/intermediate
learning manual and reference.

• Python in a Nutshell by Alex Martelli. This
book is a brief introduction and good refer-
ence to Python.

.NET
We recommend these books to learn more
about .NET:

• C# in a Nutshell by Peter Drayton, Ben
Albahari, and Ted Neward.

• Pro C# with .NET 3.0 by Andrew Troelsen.

• C# Essentials by Ben Albahari, Peter Dray-
ton, and Brad Merrill.

• C# 3.0 Cookbook by Jay Hilyard and Ste-
phen Teilhet.

Web Sites

Python
You can find more information on Python at:
http://www.python.org. This is the official
python programming language site.

.NET
For information on .NET, see http://
msdn.microsoft.com
Chem & Bio Office 2010 User Guide 277
ChemScript

278 ChemScript
Chapter 14

Index
Symbols
.NET 271, 277

Numerics
2D Structure Diagram Generation (SDG)
and Cleanup 271
2D Structure Generation and Cleanup 274

A
About Python 271
Atom 274

B
Bond 274
Books 277

C
Canonical Codes 271, 274, 276
Canonical codes 271
ChemScript API 274, 275
ChemScript Help 273
ChemScript library

loading 273
ChemScript Object Classes 274
Common scaffold orientation 271
Computing Canonical Codes 276
Connected 272
Counting Atoms 273
Create a list of CDXML files 275
Create an SD file 275

E
Entering SMILES Data 273
Exiting IDLE 273

F
File Format Conversion 271, 274
File format conversion 271
Filter an SD file 275
Functional Programming 272
Functions and Algorithms 274

G
Generate properties 271
Getting Started 272
Getting Started Guide 273

H
High Level 272
How ChemScript works 272
Human Readable Code 272

I
Introducing the ChemScript API 274

M
Molecular Mechanics 275
Molecule (Mol) 274

N
Name and Structure Conversion 274

O
Object Oriented 272

P
Powerful Syntax 272
Python 271, 272, 275, 277

about 271

R
Reaction (Rxn) 274
Chem & Bio Office 2010 User Guide 279
ChemScript

Reaction Transformation 276
Report a Chemical Name 273

S
Salt splitting 271
Salt splitting and stripping 271
Salt Stripping 274, 276
Simple salt stripping 276
Simple to Use 272
Structure Orientation 274
Structure Overlay 276
Substructure Identification and Mapping
274

T
Template Based Normalization 274
Template Based Product Generation 274
The ChemScript API online 275
Tutorials 275

U
Useful References 277
Using ChemScript 273

W
Web Sites 277
Why use ChemScript? 271
Widely Adopted 272
280

	Excerpt--ChemScript.pdf
	ChemScript 12.0
	About this document

